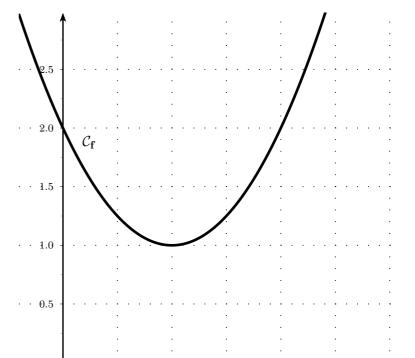
On s'efforcera de rédiger correctement et de fournir une présentation parfaite de sa copie. Pensez au BAC!!!

EXERCICE $N^{\circ} 1 : (6 \text{ points})$

La suite (u_n) est définie par $u_0 = \frac{3}{2}$ et pour tout $n \ge 0, u_{n+1} = u_n^2 - 2u_n + 2$.



La fonction $f: x \mapsto x^2 - 2x + 2$ est représentée ci-contre.

1. Conjectures graphiques

(a) Construire les points $M_0(u_0;0)$, $M_1(u_1;0)$, $M_2(u_2;0)$, $M_3(u_3;0)$ et $M_4(u_4;0)$ sur le graphique cidessus (sans faire de calculs et en laissant apparents les traits de construction).

0.5

1.0

1.5

2.0

2.5

3.0

(b) Quelles conjectures peut-on faire sur le sens de variation de la suite (u_n) et sur sa convergence?

2. Démonstration des conjectures précédentes.

- (a) Déterminer le sens de variation de la fonction f sur [1, 2].
- (b) Montrer par récurrence que pour tout $n \ge 0$, on a $1 \le u_n \le 2$.
- (c) Déterminer le sens de variation de la suite (u_n) .
- (d) Montrer que la suite est convergente et déterminer sa limite.

EXERCICE $N^{\circ} 2 : (5 \text{ POINTS})$

Déterminer les limites suivantes et préciser éventuellement la nature des asymptotes :

1)
$$\lim_{x \to -\infty} -2x^3 + 5x^2 - x + 1$$

$$\lim_{x \to -\infty} -2x^3 + 5x^2 - x + 1 \qquad 2) \quad \lim_{x \to +\infty} \cos(\frac{2x+4}{x^2+5})$$

3)
$$\lim_{x \to 2^+} \frac{x - 6}{2 - x}$$

EXERCICE N° 3 : (3 POINTS)

Soit f la fonction définie par $f(x) = \frac{x^2 + 1}{x - 1}$ sur $] - \infty; 1[\cup]1; +\infty[$.

La courbe représentant f a t-elle des tangentes parallèles à la droite (D) d'équation y = -x + 1? Si oui, en quels points? (Préciser les coordonnées).

EXERCICE N° 4:(ROC:4POINTS)

- 1. Montrer que si $\lim_{x \to +\infty} g(x) = +\infty$ et si $f(x) \ge g(x)$ pour x assez grand, alors : $\lim_{x \to +\infty} f(x) = +\infty$.
- 2. **Application**: déterminer $\lim_{x\to +\infty} \frac{x^3 2\sin(x)}{x^2 + 1}$

EXERCICE N° 5 : (PROBLÈME OUVERT/2 POINTS) Toute trace de recherche sera prise en compte dans la notation

Dans un repère orthonormé, on considère la courbe \mathcal{C} d'équation $y = \sqrt{x}$ pour $x \ge 0$. On place A(1;0). Soit M un point quelconque de \mathcal{C} d'abscisse x.

Déterminer la position du point M sur \mathcal{C} pour que la distance AM soit minimale.

BON TRAVAIL

A découper et à coller sur la première page de sa copie

Compétences	Acquis	En cours d'acquisition	non acquis
Savoir utiliser le			
théorème de convergence			
monotone (EXO 1			
question 2 d))			
Savoir interpréter			
graphiquement une limite			
(EXO 2 question 2) et			
3))			
Calculer la limite d'une			
fonction polynomiale en			
$+-\infty~({ m EXO}~2)$			
question 1))			
Savoir dériver une			
fonction (EXO 3))			
Connaitre sa question de			
cours (EXO 4)			
question 1))			